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Background

• HCCI combustion is usually highly diluted by high AFR or EGR, resulting in 
significantly low combustion temperature

• Mechanisms of NOx formation in HCCI combustion may be different
• N2O emissions may become significant in HCCI combustion

– A numerical study (Guo et al., 2004) has shown that N2O emissions become 
significant for lean premixed flames

– HCCI experiments did show an increase in N2O emission at near-misfire 
conditionsconditions

– Why?
• It is of interest to further investigate the fundamental mechanisms of NOx and 

N2O formation in HCCI combustion2



Objectives

• To numerically investigate the fundamental mechanisms of 
NOx and N2O formation in a HCCI engine fuelled with n-
heptanep

• Why n-heptane: well developed kinetics



Engine Producing 
Experimental Data

• A CFR engine
– Single cylinder
– Variable compression ratioVariable compression ratio
– Four-stroke

Cylinder



Numerical Model

• A multi-zone model
• Working fluid: ideal gas
• Simulation: starts from -360° and finishes at 360° ATDC
• Initial condition (at -360° ATDC):

– Pressure: exhaust tank pressure
Residual composition: exhaust composition– Residual composition: exhaust composition

• A combination of single and multi-zone models
– -360° to IVC: single zone model, including intake and exhaust gas 

exchangeexchange
– IVC to EVO: multi-zone model
– EVO to 360° : single zone model, including exhaust gas exchange



Multi-Zone Model

• IVC ~ EVO
– Crevice zone: (1) 2.5% of total 

mass, (2) reactions never happen
B d h h t B d (2)

Zone 3    Zone 4   Zone 5

Zone 6
– Boundary zone: exchanges heat 

with wall and zone next to it
– Each core zone: (1) exchange 

heat with zones next to it by 

Boundary zone (2)
Zone 7

Zone 8
y

conduction, (2) exchanges heat 
with wall by radiation

• No mass exchange between zones
Crevice zone (1)

Piston



Chemistry

• A combination of LLNL mechanism and Gri Mech 3.0
– N-heptane combustion: LLNL reduced mechanism (Seiser et al., 

Proc. Comb. Inst. 28, 2000), )
– NOx: Gri Mech 3.0 (http://www.me.berkeley.edu/gri_mech/ ), including 

all possible NO formation mechanisms (thermal, prompt, N2O 
and NNH)and NNH)

• 177 species, 1638 reactions



Model Validation –
Pressure PredictionPressure Prediction
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NOx Emissions
m 150

200

Measured
Calculated

m

14.0

16.0

18.0

Measured
Calculated

Z CA50

co
nc

en
tra

tio
n,

 p
pm

100

Negative CA50 Positive CA50

Zero CA50

co
nc

en
tra

tio
n,

 p
pm

8.0

10.0

12.0
Zero CA50

?

30 35 40 45 50 55 60 65

N
O

X 
c

0

50

Negative CA50 Positive CA50

N
O

x c

0.0

2.0

4.0

6.0

Positive CA50 Negative CA50

?

• Simulation captured the qualitative trend when AFR is smaller than 
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50 or CR is greater than 10
– Increasing AFR or decreasing CR result in decreases in NOx

emission
H f il d t di t th t d t hi h AFR l CR h• However, failed to predict the trend at higher AFR or lower CR when 
combustion phasing is retarded and misfire condition is approached



Cycle Variation Results in 
NOx Increase at Misfire 
Conditions?
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• Significant cycle-to-cycle variation does exist at higher AFR or lower CR
• However, average NOx emissions decrease with increasing AFR or 

decreasing CRdecreasing CR 
• Further study is needed to understand the increase in NOx emissions at near-

misfire conditions



NOx Formation 
Mechanisms

• NO formation dominates the formation of NO since NO2NO formation dominates the formation of NOx, since NO2
comes from NO

• NO can be formed by four possible mechanisms
Th l h i d i ti i ti l i– Thermal mechanism, dominating in conventional engines

– Prompt mechanism, dominating in diffusion flames
– N2O intermediate route mechanism. N2 is converted to N2O 2 2 2

first, and then N2O is converted to NO
– NNH intermediate route mechanism. N2 is converted to NNH 

first, and then NNH is converted to NOfirst, and then NNH is converted to NO
• Which mechanism dominates in HCCI combustion?



NO Formation by Various 
Reactions at Different AFRs
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Crank angle, degrees (ATD)

-60 -40 -20 0 20 40 60
4.0e 6

Crank angle, degrees (ATDC)

-60 -40 -20 0 20 40 60
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– N2O+O<=>2NO, N2O intermediate route
– NO is primarily formed by the thermal mechanism at a lower AFR

At AFR 50• At AFR = 50
– N2O+O<=>2NO
– N2O intermediate route dominates



N2 Consumption by 
Different RoutesDifferent Routes

At t AFR N i1 6e-5 • At most AFRs, N2 is 
primarily consumed by 
N2O intermediate route

NO f ti iro
ut

es
, g

1.2e-5

1.4e-5

1.6e 5

Thermal
Prompt
NNH intermediate route
N2O intermediate route

– NO formation is 
dominated by N2O 
intermediate route at 
most AFRsed

 b
y 

di
ffe

re
nt

 r

6 0 6

8.0e-6

1.0e-5

most AFRs

N
2 c

on
su

m
e

2.0e-6

4.0e-6

6.0e-6

Negative CA50 Positive CA50

Air fuel ratio

30 35 40 45 50 55 60
0.0



NO Formation by Various 
Reactions at Different CRs
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• At a lower CR, N2O intermediate dominates the formation of NO
• At a higher CR, the contribution of thermal mechanismAt a higher CR, the contribution of thermal mechanism 

increases



N2 Consumption at 
Various CRsVarious CRs
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by N2O intermediate route 
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N2O Emissions
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• N2O emissions increase when misfire condition is approached, 
b i i il t th b ti f t l l i d
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being similar to the observation for extremely lean premixed 
flames
– N2O is a concern in low temperature combustion

• Why?



N2O Formation by Various 
Reactions at Different AFRs
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• Two factors result in the increase in N2O emissions when AFR
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Two factors result in the increase in N2O emissions when AFR 
increases
– The fraction of N2O => NO decreases with the increase in AFR
– The fraction of N O formed in combustion stage => N in– The fraction of N2O formed in combustion stage => N2 in 

expansion stroke decreases with the increase in AFR, due to the 
shift of reaction N2O (+M) = N2 +O (+M) toward to reverse direction



N2O Formation and 
Destruction at Various AFRs
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• The fraction of N2O => NO decreases with increasing AFR
• The formed N2O from N2 slightly increases at higher AFRs, due to the shift of 
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reaction N2O (+M) = N2 +O (+M) to the reverse direction



N2O Formation by Various 
Reactions at Different CRs
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• Two factors result in the increase in N2O emissions when CR 
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2
decreases
– The fraction of N2O => NO decreases
– The fraction of N2O formed in combustion stage => N2 in 2 g 2

expansion stroke decreases



N2O Formation and 
Destruction at Various CRs
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Conclusions

• The numerical model captured experimentally measured NOx emissions trend 
at most conditions, but failed to capture the increase in NOx emissions at near-
misfire conditions
NO formation in a HCCI engine at most operating conditions is dominated by• NOx formation in a HCCI engine at most operating conditions is dominated by 
the N2O intermediate route mechanism, being different from in conventional 
engines

• The model successfully captured the increase in N2O emissions at near-misfireThe model successfully captured the increase in N2O emissions at near misfire 
conditions

• The increase in N2O emissions at near-misfire conditions is due the decrease in 
the fraction of N2O to NO and the shift of the reaction N2O (+M) = N2 + O (+M) 
toward the reverse direction
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• Modelling of diesel HCCI combustion by surrogate fuel
– selection of appropriate surrogates
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– mechanism for surrogate fuels
– improvement of zone model



Thank you!


