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Introduction 
IEA 2009 presentation 

• Cetane number of an oil sands 
derived diesel fuel was 
increased by three methods: 
hydroprocessing, adding 
cetane improver, and blending 
with high cetane renewable 
diesel fuel

• Results: fuels with similar 
cetane number have different 
performance if upgraded by 
different methods

EGR=59.6% ± 1.5%

Power



Introduction 

• The research continues to investigate fuel property effect on 
HCCI combustion 

• Conventional fuel quality indicators of octane number and 
cetane number are not enough to reasonably rate fuels for 
HCCI combustion

• Other fuel properties may affect HCCI combustion
– cetane number, distillation process, aromatics content, etc.

• How does each of these properties affect HCCI 
combustion?



Objective

• To investigate the effects of cetane number (CN), 90% 
distillation temperature (T90) and aromatics content on 
combustion and emission characteristics of a HCCI engine



Experimental Setup 
HCCI  Engine laboratory
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Experimental Setup 
Enhanced fuel injector/vaporizer  

•Enhanced fuel injector/vaporizer consisting of:

o OEM gasoline port fuel injector
o Air blast for improved atomization
o Heated section to improve vaporization

Port fuel injector 

Air blast 

Heated section 



Operating Conditions

Parameter Acronym Value

Compression ratio CR variable between 
9.00:1 to 15.00:1

Engine speed N 900 rpm
Manifold absolute pressure MAP 150 kPa
Exhaust pressure ExhP 170 kPa
Intake mixture temperature Tmix 75 °C
Fuel vaporizer temperature Tvap 270 °C
Exhaust gas recirculation fraction EGR 60%
relative air/fuel ratio λ 1.2
Coefficient of variation of IMEP COV IMEP ≤ 5%
Maximum rate of pressure rise (dP/dθ)max ≤ 10 bar/°CA



Fuels 

• To investigate the respective effects of cetane number (CN), 
distillation temperature (T90) and aromatics content, it is 
important to isolate these properties appropriately

• The Coordinating Research Council's (CRC) Fuels for 
Advanced Combustion Engines (FACE) Group designed a fuel 
matrix to enable researchers to isolate the effects of CN, T90 
and aromatic content on advanced combustion strategies 



FACE Fuels
Design and Measured Values for 
CN, Arm, and T90
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Fuels for Advanced Combustion 
Engines (FACE) 

Design and Measured Values for 
CN, Arm, and T90

FACE Design Cube Measured Values
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FACE Fuels
Distillation Curves

Temperature (oC)

150 200 250 300 350

D
is

til
la

tio
n 

(v
ol

%
)

0

20

40

60

80

100

1
2
3
4
5
6
7
8
9

FACE No. 



Vaporizer Temperature

• Determined based on sooting 
propensity

• Tvap range was limited at the low 
side by engine unstable operation.

• High T90 fuels (FACE No. 2, 4, 6, 
8, and 9) produced the most soot 
emissions.

• Tvap=270 °C was selected for the 
rest of experiments. 
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Combustion Phasing 
(CA50) – CN Effect

Compression ratio
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• The higher the CN, the earlier the combustion phasing, suggesting that 
CN does play significant role in predicting ignition

Higher CN

Lower CN
Open: higher CN
Filled: lower CN



Combustion Phasing 
(CA50) – T90 Effect

• The lower the T90, the earlier the combustion phasing, suggesting that 
T90 may also affect ignition
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Combustion Phasing 
(CA50) – Aromatics Effect

• No clear trend can be observed for the effect of aromatics content on 
ignition
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Combustion Phasing (CA50)

CA50=269.545-37.345 CR+ 1.292 CR2 -0.525 CN + 
0.038 T90 + 0.013 Arom

Regression analysis for CA50

• The absolute values of the coefficient are in the order 
of bCN (0.525) > bT90 (0.038) > bArom (0.013)



Low Temperature Heat Release 
(LTHR)

• Higher CN fuels released more 
energy during LTHR. 

• T90 and Aromatic content did not 
significantly affect LTHR.
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Combustion Duration (CA10-90)

• At the optimum combustion phasing of 
CA50=5-10 °CA,aTDC, high CN fuels 
exhibited long combustion duration.

• An abrupt CA10-90 reduction was 
observed for high CN fuels around 
-5 °CA,aTDC.

•
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Rate of Heat Release (RoHR)

• RoHR was faster for low CN 
fuels.

• Strong dual stage HTHR was 
observed for high CN fuels 
resulted in prolonged CA10-
90.
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Thermal Efficiency –
CN Effect

Open: higher CN
Filled: lower CN
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• Lower CN fuels offer higher thermal efficiency, possibly due to 
optimized combustion phasing and shorter combustion duration



Thermal Efficiency –
T90 Effect

CA50, degrees (ATDC)
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• For higher CN fuels (blue and green), the higher the T90, the lower 
the thermal efficiency

• For lower CN fuels (black and red), effect of T90 on thermal 
efficiency is negligible (possibly the effect is offset by CN effect)



Thermal Efficiency –
Aromatics Effect
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• The higher the aromatics content, the lower the 
thermal efficiency



CO Emissions
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• CO emissions were mostly 

function of operating 
conditions

• Fuels No. 6 and 8 (high T90, 
high CN) produced more CO 
emissions 



Unburned Hydrocarbon (HC) 
Emissions
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• HC emissions were a function 
of both operating conditions 
and fuel properties 

• Low CN, high T90 fuels 
produced more HC emissions.

• High CN, low T90 fuels 
produced less HC emissions. 



NOx Emissions
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• NOx emissions were generally 
low and mostly function of 
operating conditions.

• High CN, low T90 fuels 
produced the least NOx
emissions. 



Conclusions

• Combustion phasing
– Increasing CN or decreasing T90 advances the combustion phasing, with CN effect 

being more significant
– The effect of aromatics content is negligible

• Combustion duration
– High CN fuels exhibit longer combustion duration at optimized operating condition

• Thermal efficiency
– The higher the CN, the lower the thermal efficiency
– For higher CN fuels, the higher the T90, the lower the thermal efficiency; For lower 

CN fuels, T90 effect is negligible
– The higher the aromatics content, the lower the thermal efficiency

• Emissions
– CO emissions are basically of function of operating condition, but fuels with high CN 

and higher T90 emit more CO
– Fuels with lower CN and higher T90 produce more HC
– NOx emissions basically depend on operating conditions
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