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BACKGROUND
Global warming mitigation

A better understanding 
of

combustion combustion 
chemistrychemistry

Need of more efficient and cleaner 
gas turbines and engines

Homogeneous 
Charge 
Compression 
Ignition 
(HCCI) 
engine

High working efficiency
but low particulate and NOx emissions

(lower temperature combustion) 22
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BACKGROUND
To better understand combustion chemistry 
by using detailed chemical kinetic models

FUEL

• Alkanes
• Alkenes

• Aromatics
• Esters

•Alcohols

Definition 
of proper surrogates

Development of 
chemical mechanisms
(elementary reactions)
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Simulation 
for validation purpose
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AUTOMATIC GENERATION OF DETAILED MECHANISMS 
FOR OXIDATION REACTIONS

Primary 
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Generator

Reaction Model 
in a 
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Free
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ALGORITHM  OF  GENERATION  OF  THE PRIMARY MECHANISM FOR 
ALKANES, CYCLIC ALKANES, METHYL ESTERS AND ALKENES

Reactant RH

bimolecular initiation (with O2 and with RH)
unimolecular initiation

•R

Initiations

β-scission 
oxidations

addition to oxygen, decomposition to cycloether (T < 1000K)

isomerization through a cyclic transition state 

decomposition by 
metathesis (alkylic, allylic, vinylic H-atoms) 

•R’ + Primary products 

addition to the double bond

Propagations

}combination 
disproportionation  

Primary products 

with resonance stabilized radicals

Terminations

ene or
retro-ene 
reactions

Primary 
products 
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STRUCTURE OF THE PRIMARY  MECHANISM FOR ALKANES
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REACTION BASES

1 - C0-C2 reaction base (781 reactions)
• All the elementary reactions involving radicals or molecules 
containing from 0 to 2 atoms of carbon)

Validated in an extended range of temperatures and for various types of reactors

2 - C3-C5 reaction base for unsaturated compounds (450 reactions)
• Including the reactions of allene, propyne, 1,3-butadiene, 1-butyne, 2-butyne, 
cyclopentene and derived species with rate constants of the literature

3 - reaction base for small aromatic species (328 reactions)
• Including the reactions of benzene, toluene, phenol, ethylbenzene, styrene, 
benzaldehyde and derived species with rate constants of the literature

77
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MAIN KINETIC DATA  OF THE  PRIMARY  MECHANISM OF 
LINEAR ALKANES

H-abstraction 
(per H atom) 

Primary H 
(i.e. R-CH 3) 

Secondary H 
(i.e. R1-CH 2-R2) 

 lg  A b E lg A  b E 
Initiation with O 2   12.84 0 ΔHr  12.84 0 ΔHr  

11.43 0 5000 11.99 0 5000 Oxidation         n>4     
                         n≤4 11.60 0 5000 12.16 0 5000 
H-atom abstraction by       
 •O• 13.23 0 7850 13.11 0 5200 
 •H 6.98 2 7700 6.65 2 5000 
 •OH 5.95 2 450 6.11 2 -770 
 •CH3 -1 4 8200 11.0 0 9600 
 •OOH 11.30 0 17000 11.30 0 15500 

Other reactions lg A  b E 
Addition of a free radical to O2 Calculated by additivity method 
Beta-scission to •CH 3 + molecule 13.30 0 31000 
of a free to •R +  molecule 13.30 0 28700 
radical to •OO H + 

molecule 12.92 0 26000 
 to •OH  + molecule 9 .00 0 7500 
Cyclic 3 members ring 11.78 0 17950 
ether 4 members ring 10.96 0 16600 
formation 5 members ring 9.56 0 7000 
 6 members ring 8.23 0 1950 
Disproportionation of •OOR and 
•OOH 11.30 0 -1300 
Isomerizations and unimolecular 
initiations 

Calculated according to the methods 
proposed by S.W . Benson 

Com bust. Flame, (1998 , 2005) ; Ph. D. Thesis of P.A. Glaude (1999) and F. Buda (2006)
(k=AxTb x exp(-E/RT),  Units :  cm3, mol, s, cal)

88



International Energy Agency International Energy Agency -- Annual Task Leaders Meeting 2010Annual Task Leaders Meeting 2010

MAIN KINETIC DATA  OF THE  PRIMARY  MECHANISM OF 
ALKENES

The presence of the double bond induces an important increase 
of the number of kinetic parameters

Allylic H Vinylic H

Primary Secondary               Tertiary Secondary              Tertiary

lgA b E lgA b E lgA b E lgA b E lgA b ElgA b E lgA b E lgA b E lgA b E lgA b E

Radical

10.8 0.7 25 10.6 0.7 13 10.5 0.7 5 10.7 0.7 36 10.8 0.7 32•O• 10.8 0.7 25 10.6 0.7 13 10.5 0.7 5 10.7 0.7 36 10.8 0.7 32•O•

4.8 2.5 10 4.4 2.5 -7 4.4 2.5 -12 5.6 2.5 51 5.6 2.5 41•H 4.8 2.5 10 4.4 2.5 -7 4.4 2.5 -12 5.6 2.5 51 5.6 2.5 41•H

6.0 2 -1 6.2 2 -6 6.1 2 -11 6.0 2 12 6.0 2 6•OH 6.0 2 -1 6.2 2 -6 6.1 2 -11 6.0 2 12 6.0 2 6•OH

-1.3 3.5 24 11.9 0 29 11.9 0 22 -1.7 3.5 54 -1.7 3.5 50•CH3 -1.3 3.5 24 11.9 0 29 11.9 0 22 -1.7 3.5 54 -1.7 3.5 50•CH3

3.5 2.6 58 3.5 2.6 52 4.2 2.6 45•HO2 3.5 2.6 58 3.5 2.6 52 4.2 2.6 45•HO2

H

H

C C C CH

H

H

HH

H HHH

HH

C C C CHH

HH

HH

HHHH

HH HH

H Abstractions:

Combust. Flame, (2001)                Ph. D. Thesis of B. Heyberger (2002)
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MORE ACCURATE KINETIC DATA USING QUANTUM MECHANICS 
CALCULATIONS

Isomerisation :
Unsaturated 5 members ring

Secondary allylic H-atom
H

21.1 kcalmol
Δ

H
 (k

ca
lm

ol
)

0

15

30

0.0

15.3

0.7

36.7

-2.1
-2.8

12.6

15.3 kcalmol 36.7 kcalmol

Cis-trans conversion Isomerisation

Quantum calculations 
at the CBS-QB3 level of theory 

using Gaussian03

1010



International Energy Agency International Energy Agency -- Annual Task Leaders Meeting 2010Annual Task Leaders Meeting 2010

EXGAS-ALKANES
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F. BUDA, R. BOUNACEUR, V. WARTH, P.A. GLAUDE, R. FOURNET et F. BATTIN-LECLERC, “Progress towards an unified detailed kinetic 
model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K”, “Combustion and Flame” 142, 170-186 (2005)

J. BIET, M.H. HAKKA, V. WARTH, P.A. GLAUDE, F. BATTIN-LECLERC 
“Experimental and modeling study of the low-temperature oxidation of large alkanes”, “Energy & Fuels” 22, 2258-2269  (2008),

Coming 
soon 

EXGAS- 
ALKANES- 

ESTERS
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EXAMPLE OF MODELLING: isomers of heptane

Ignition delay times measured in a rapid compression machine (Lille - France) 
(Pc from 3.7 to 4.6 bar,  at Φ = 1, Minetti et al., 1995 )

Symbols are experiments, lines are simulations 

F. BUDA, R. BOUNACEUR, V. WARTH, P.A. GLAUDE, R. FOURNET, F. BATTIN-LECLERC
“Progress towards an unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K ”, “Combustion&Flame”, 142, 170 (2005).
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EXAMPLE OF MODELLING: 3 linear isomers of heptene

Pressure changes of heptenes/«air» mixtures 
measured in a rapid compression machine (Cambridge - USA) 

(Tc = 627 K, Pc = 41.6 bar,  at Φ = 0.4, Tanaka et al., 2003 )
Symbols are experiments, lines are simulations 
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6543210
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1-heptene

2-heptene
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1-heptene: 7178 reactions
2-heptene: 8515 reactions
3-heptene: 3032 reactions

Still problems in modelling the 
formation of products

R. BOUNACEUR, V. WARTH, B. SIRJEAN, P.A. GLAUDE, R. FOURNET, F. BATTIN-LECLERC
“Influence of the position of the double bond on the autoignition of linear alkenes at low temperature”, “Proceedings of the Combustion Institute”, 32, 387 (2009).

1313
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EXAMPLE OF MODELLING: 4 isomers of butanol

Not yet validated
for modelling the 

formation 
of products

Ignition delay times of butanol/O2 /Ar mixtures measured in a shock tube (Troy - USA) 
(Preflected

 

shock

 

≈

 

1 bar,  at Φ = 1, with 1% butanol)
Symbols are experiments, lines are simulations 

J.T. MOSS, A.M. BERKOWITZ, M.A. OEHLSCHLAEGER, J. BIET, V. WARTH, P.A. GLAUDE, F. BATTIN-LECLERC 
“An experimental and kinetic modelling study of the oxidation of the four isomers of butanol”, “The Journal of physical chemistry A” 112, 10843-10855 (2008)
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Obtain validation experimental results under a widest range of operating conditions

Reactors for which the physical model is the simplest  possible

Low pressure (6.7 kPa)
premixed laminar flame

Shock tube
for auto-ignition

delay times 
measurements

Jet-stirred reactor Products 
analysis

1515

Atmospheric
premixed laminar flame

for laminar flame 
speed measurements
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Low pressure premixed laminar flame

Study of a lean premixed
methane flame
doped with indane

(P = 6.7 kPa,  at Φ = 0.67, 
C10

 

H10

 

/CH4

 

= 12.8%, with Ar as dilutant

 

)

Model including 1658 reactions

1616E. POUSSE, Z. TIAN, P.A. GLAUDE, R. FOURNET, F. BATTIN-LECLERC
“A lean methane premixed flame doped with components of diesel fuel -part III: indane and comparison between n-butylbenzene, n-propylcyclohexane and indane”,

“Combustion&Flame”, 157, 1236 (2010).
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Jet-stirred reactor

Study of the oxidation
of methyl decanoate 
(P = 1 bar,  at Φ = 1, 
with He as dilutant)

Model of Nancy :
Glaude et al., Combust Flame, 
2010, in press

Model of LLNL:
Herbinet et al., Combust Flame, 
2008,  154, 507.
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Reactivity of 
large methyl esters

Modeling of the oxidation
of C11 -C19 methyl esters 
and n-hexadecane
in a jet-stirred reactor 
(P = 1 bar,  at Φ = 1, 
concentration of C atoms kept constant)

Model for methyl decanoate including 
43 444 reactions

Model for methyl stearate including 
7171 reactions

1818
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Herbinet et al., Proc. Combust.
Inst., 2010,  in press.

http://www.total.com/fr/home_page/
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Future work

Develop better defined and more accurate 
detailed chemical models

1-Write models
for an enlarged range of initial reactants

with more accurate parameters based on theoretical calculations

2-Obtain validation experimental results
under a widest range of operating conditions

with careful measurements of minor combustion products
1919
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