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Background and Motivation (1)
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Project framework of the present effort:

SINTEF work
BIGH2 Phase 1/NRC, 10 MNOK (1.6 MUSD), 18 months.
DECARBIT/EU, 15 MEURO (20 MUSD), 36 months.
Possible extension: BIGH2 Phase 2/NRC, 30 MNOK (4.8 MUSD)

SNL work
supported by the Division of Chemical Sciences, Geosciences, 
and Biosciences, Office of Basic Energy Sciences of the US 
Department of Energy and by the US Department of Energy 
SciDAC Program.

Background and Motivation (2)
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Background and Motivation (3)

H2

 

combustion ”Enabling”

 

for CCS in pre-combustion separation scheme:

Presently, hydrogen is only burned with nitrogen or steam dilution to 
contain NOx emissions within the limits imposed by legislation
Lean Pre-Mixed (LPM) combustion has proven successful in 
environmental-friendly, efficient ng & oil firing of gas turbines
Existing LPM burners fail when burning hydrogen-rich fuels because of 
important differences between H2 and HC physical & combustion 
properties
Fundamental and applied knowledge has to be aquired in order to achieve 
successful gas turbine LPM operation with hydrogen-rich fuels
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”Gas Turbine Fuel Flexibility For A Carbon Constrained World”, GE Energy by Bob Jones
Workshop on Gasification Technologies -

 

Bismark, ND (2006)

Background and Motivation (4)
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Background and Motivation (5)

No ”flame holding”
 

at fuel injectors for intrinsic flashback safety!

Flame holding is key challenge to design 
of premixers for high-H2

 

fuels

•An unwanted transient brings flame into premixer 

•Flame enters the premixer’s bulk flow and “creeps”

 
in low-velocity near-wall regions

•Regardless of where flashback originates, the near 
field will ultimately be affected

•Flashback safety criteria implies that flame 
anchoring in near-field of fuel injector is not 
acceptable

•Flame must be washed out of premixer as soon as 
nominal operating conditions are restored

•Blow off is a necessary (but perhaps not sufficient!) 
condition for flashback safety fuel injection
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Flame Stabilization Downstream of Transverse Jet

Case Parameters (Pressure = 1 bar):
Assuming full chemical kinetics
Rv = Uj / Ucf ~ 4.4
Rm = ρjUj^2 / ρcfUcf^2 ~ 10.6
Lx ~ 25*dj , Ly ~ 20*dj , Lz ~ 20*dj
dj = 1 mm
Resolution 10 – 20 μm 
(Δx+=Δz+~0.5, Δy+~0.3-0.7)
Grid = 1408x1080x1100 ~ 1.6*10^9
Total CPU time ~ 3.7 Mhrs (Jaguar 
@ ORNL )

Cross Flow (in X-direction) from aux DNS :
Ucf ~ 55 m/s
Air at 750 K
δcf ~ 3.1 mm (80%)

Jet Flow (in Y-direction):
Uj ~ 245 m/s
H2+N2 (70/30) at 423 K
Characteristic lenght dj = 1 mm
Parabolic laminar profile (Re~2700)
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Mathematical Model & S3D

Li et al. (2004)

S3D Numerics

Spatial Differencing: 8th

 

order explicit 
centered FD in the interior domain

Spatial Differencing: 3rd

 

order explicit one-

 
sided FD at the boundaries

Temporal Integrator: 4th

 

order 6-stage 
explicit Runge-Kutta
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Reactive JICF, Instantaneous Temperature Field in XY-plane
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Reactive JICF, Instantaneous Temperature Field in YZ-plane
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Reactive JICF, flame anchoring (1)

Maximum heat release rate (black lines) mark flame tongues entraining vortex shedded in shear layer
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Reactive JICF, flame anchoring (2)

Maximum heat release rate (black lines) mark flame tongues entraining vortex shedded in shear layer
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Reactive JICF, velocity and heat release rate averaged fields

Flame is ”Anchored”

 

in Low Velocity Region Downstream of Jet (~4d from wall)
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Reactive JICF, averaged temperature and ”low-velocity”
 

zones

Flame is ”Anchored”

 

in Low Velocity Region Downstream of Jet (~4d from wall)
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Reactive JICF, averaged temperature and ”low-velocity”
 

zones

Flame is ”Anchored”

 

in Low Velocity Region Downstream of Jet (~4d from wall)
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Reactive JICF, counter-rotating vortex pair (CVP)

Upstream region of high heat release rate stabilized between the

 

CVP
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Reactive JICF, counter-rotating vortex pair (CVP)

Downstream region of  high heat release wraps around CVP (lower in between)
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DNS of inert mixing case (wall-normal 
injection)

DNS of inert mixing case (CF-tilted injection)

Criteria is formulated to predict likehood of flame holding: co-located low mean flow 
speed and high fuel concentration (corollary outside wall thermal boundary layer)

Probable flame holding locations can be indicated for specific fuel injection 
configurations after parametric study varying injection angle, nozzle shape etc.

Non-reactive DNS of fuel injection (CPU cost ~ 2x105 hrs for each simulation)

Inert JICF, parametric study (ongoing)
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CF-tilted injection

Wall-normal injection

Knowledge of turbulent flame speed is required!

Inert JICF, parametric study: flame anchoring assessment
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Behavior of laminar flames

Experiments of Bradley et al. 2007

Laminar flame speed decrease for increasing pressure…
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DNS of Turbulent V-flames (ongoing)

Um

Lx

Ly

Lz

Isotropic Turbulence (D
ecaying)

Fresh R
eactants

H
ot P

roducts

α

Typical 2-D case (1, 5 & 10 bar, φ~0.8):
Full chemical kinetics (9 species, 19 
reactions, Li et al. 2004)
Lx * Ly ~ 4.0 cm * 4.0 cm
Resolution 18 μm
Grid ~ 2240x2240 ~ 5.0*10^6
Um ~ 60 m/s
U’ ~ 7.4 m/s
Ret ~ 400
Da = tt / tf ~ 5.6
CPU cost pr. node&timestep τc ~ 1.0*10^-8 s
Typical timestep τs ~ 2-10 ns
Useful physical simulation time T (after 
initial transient of 1 ”transit times”) 3
”transit times” ~ 3*(Lx/ Um) = 2 ms
Turbulent flame speed estimated as:

St ~ sqrt(Um^2 * tan^2(α)/(1+ tan^2(α)))
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DNS of Turbulent V-flames: P=1 bar, φ=0.8

Semi-laminarization past the flame surface and turbulence decay towards domain exit!
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DNS of Turbulent V-flames: P=1 bar, φ=0.3

Characteristic ”open tip/cusp”

 

and highly reactive ”domes”

 

for ultra-lean case!
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DNS of Turbulent V-flames: P=1 bar, φ=0.8
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DNS of Turbulent V-flames: P=5 bar, φ=0.8
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DNS of Turbulent V-flames: P=1 bar, φ=0.8
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DNS of Turbulent V-flames: P=5 bar, φ=0.8
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DNS of Turbulent V-flames: St

 

comparison 
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Pressure/φ 0.3 0.5 0.8 1.5

1 bar 11.0 m/s 15 m/s 18 m/s 23 m/s

5 bar 9.5 m/s 13 m/s 22 m/s 28 m/s

10 bar ? 10 m/s 27 m/s ?

DNS of Turbulent V-flames: St

 

overview 

Opposite behavior is observed in the lean and rich case!
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Conclusions & Further Work
1.

 

”Flame holding”

 

in the near field of fuel jets in cross flow of air appear 
to be closely related to the vortex shedding of the jet shear layer and 
not to flame propagation in the boundary layer.*

2.

 

Analysis and data mining of the DNS results are needed to 
quantitatively relate flame anchoring and propagation to the complex 
flow field.

3.

 

Further work includes also:

•

 

investigation of the effects of boundary layer turbulence, nozzle 
shapes, injection angles on fuel injection configurations

•

 

detailed mapping of turbulent flame speeds at GT conditions and 
comparison with experimental investigations (AIST? PSI? 
Others…)

* This work is scheduled for oral presentation at the 33rd

 

International Symposium on Combustion in Bejing.
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